Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond.
نویسندگان
چکیده
The zero-phonon transition rate of a nitrogen-vacancy center is enhanced by a factor of ∼70 by coupling to a photonic crystal resonator fabricated in monocrystalline diamond using standard semiconductor fabrication techniques. Photon correlation measurements on the spectrally filtered zero-phonon line show antibunching, a signature that the collected photoluminescence is emitted primarily by a single nitrogen-vacancy center. The linewidth of the coupled nitrogen-vacancy center and the spectral diffusion are characterized using high-resolution photoluminescence and photoluminescence excitation spectroscopy.
منابع مشابه
Coupling of NV centers to photonic crystal nanobeams in diamond.
The realization of efficient optical interfaces for solid-state atom-like systems is an important problem in quantum science with potential applications in quantum communications and quantum information processing. We describe and demonstrate a technique for coupling single nitrogen vacancy (NV) centers to suspended diamond photonic crystal cavities with quality factors up to 6000. Specifically...
متن کاملDeterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity.
We describe and experimentally demonstrate a technique for deterministic, large coupling between a photonic crystal (PC) nanocavity and single photon emitters. The technique is based on in situ scanning of a PC cavity over a sample and allows the precise positioning of the cavity over a desired emitter with nanoscale resolution. The power of the technique is demonstrated by coupling the PC nano...
متن کاملHybrid Plasmonic Photonic Crystal Cavity for Enhancing Emission from near-Surface Nitrogen Vacancy Centers in Diamond
Optical cavities create regions of high field intensity, which can be used for selective spectral enhancement of emitters such as the nitrogen vacancy center (NV) in diamond. This report discusses a hybrid metal−diamond photonic crystal cavity, which provides greater localization of the electric field than dielectric cavities and mitigates metalrelated losses in existing plasmonic structures. W...
متن کاملHybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers.
A design for an ultra-high Q photonic crystal nanocavity engineered to interact with nitrogen-vacancy (NV) centers located near the surface of a single crystal diamond sample is presented. The structure is based upon a nanowire photonic crystal geometry, and consists of a patterned high refractive index thin film, such as gallium phosphide (GaP), supported by a diamond substrate. The nanocavity...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 109 3 شماره
صفحات -
تاریخ انتشار 2012